

The ICARC FOX Tracker Prototype FOX Tracker

KC0JFQ: William Robison

Job: fox present 17 File: fox present 17.tex

November 26, 2025

Outline

Overview

Synchronous Detector

Synchronous Detector Action

Antenna Switching

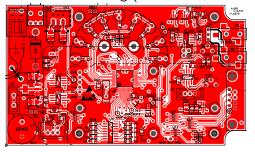
Internal Receiver Module

Electronic Antenna Rotator

Daughtercard Images

Imitation Panel Meter

Done



Overview

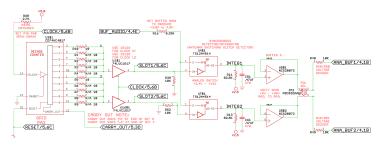
Yet another winter project is upon us...

TDOA direction finding (ICARC FOX Tracker)

Time Difference Of Arrival our 2-antenna switch with a processor added!

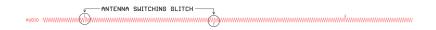
Processor driving LEDs is less \$\$\$ than a mechanical meter
Implement a synchronous detector

External of Internal Receiver


Processor allows for an electronic antenna rotator

Synchronous Detector

The synchronous detector


Decade counter allows integrating a small slice of audio Clock Buffer reduces sampling window by half Analog Switch plus R/C integrator Follower unity gain buffer (Integrator is not loaded) zNEO samples ANA_BUF1 and ANA_BUF2 zNEO generates CLOCK

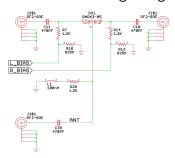
Synchronous Detector Action

What the synchronous detector sees:

Phase shifts (due to antenna switching) are in opposite direction

Integrator gated on only during antenna switching

Opposite polarity glitch on INTEG1 and INTEG2


zNEO digitizes voltage at the integrator at end of the sampling period

Antenna Switching

Antenna switching using PIN diode:

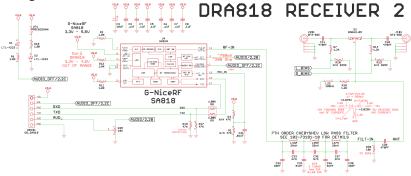
L_BIAS and R_BIAS are opposite polarity R10/R13 will be removed (not necessary in this design)

Forward biased diode sits about 2V above ground

Same operating principle as 102-73170-20

Daughtercard rides on main board

2 antennas

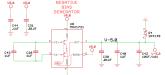

External tranceiver

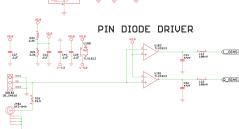
Internal Receiver Module

Using our SA818 RF module:

zNEO on mainboard controls SA818 (i.e. selects frequency) Same PIN switch

Low Pass Filter from Fox Transmitter




Internal Receiver Module

Negative bias and PIN driver:

-5V SUPPLY

Simple switched-capacitor voltage pump

Limited current capability

Only used to reverse bias the PIN diode

Comparator powered by +5V and -5V rail

Comparator output rail-to-rail

Electronic Antenna Rotator

Switched Antenna Array:

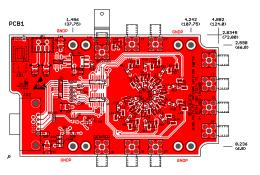
PIN diode antenna select

PIN diode driver

Same design, back again

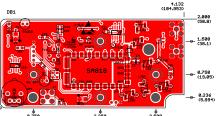
Very small current on -5V rail

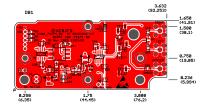
Same Comparator design



Antenna Rotator Artwork

The board (9 channels):


9 elements one center element, eight radial elements DE9 control cable, SMA/BNC coax back to control board Center/radial spacing slightly less than 1/2 wavelength


Daughtercard Images

SA818 Receiver

Antenna Switch:

Imitation Panel Meter

Almost Done...

LED array on main board sticks out through bottom panel
Use extra circuit board as drill jig
LEDs just fit between housing and circuit board
LEDs just fit between housing and circuit board
LEDs protrude only about 1mm through panel

Done

We are finished!

Indented Line

Scary Notes for the Presenter

These are my crib notes. I sure hop I rememberd to print them off and bring them along...