Using Microprocessors

The ICARC Fox Hunt Transmitter Family

Presentation by KCOJFQ

William Robison

March 18, 2025

A microprocessor application
http://n952.00guy.com/HamRDF /index.html
http://n952.00guy.com/eagle/index.html

Job: fox'present’9
File: fox present’9.tex

“’Amate fio Clul

1/14

Table of Contents

What can we do with a SOC
SOC Introduction

ZiLOG zNEO

The EXAMPLE Project
Other Raspberry-PI Projects

Secret Content

What can we do with single-chip computer?

Single Chip microprocessors are in everything these days

A hands-on project for weekend entertainment:
A bit of kit for radio fox-hunting.

Can we come up with a micro processor system project to
control a radio transmitter for amateur hunters?

What can we make with single-chip computer?

Wide Universe of SOC to choose frrom

SOC = System On Chip

Raspberry Pl

Raspberry-Pl Zero
ARM
Arduino
PIC12/PIC14
ZiLOG zNEO

2 Cf

'/-\mate Radie Club

4/14

Raspberry-PlI

The Raspberry-Pl Zero-W is small

Project built with the Raspberry-PI-ZERO fits in our box!
The -Pl is a power PIG, one fox-hunt per battery set

Prone to SD Card corruption requiring re-load

ZiLOG zNEO

Typical SOC: ZiLOG ZNEO

Ml Cnmnel {1/ WIVE whic FOR VED
UM Timers | R Oscillator| | & Reset Control

Hardware

128KB Program Flash
Crystal 4KB Data RAM

Large set of peripherals

b Simple Flash programming
interface

s Everything we need/want in one

e package

éé& b ééé =

What's missing

What else do we need

Hardware

Circuit board, somewhere to put the parts

Power, battery or wall-wart

Software

Program to run the system
Instructions loaded into the Flash Memory
Temporary stuff in RAM

owalCitya
e mateur Radio Club

7/14

The EXAMPLE Project

A FOX HUNT transmitter

What is FOX HUNT ?

Someone hides the transmitters

Everyone else tries to find them

Why do we use the SOC

FCC rules dictate station identification

Five or six transmitters time-multiplexed
on the same frequency

The transmitter can talk!

Control System: Audio

Your introduction to reading schematics

Simple square wave —
That VCMO_TONE goes off to drive the radio

Voice Generator

PWM
That PWMHO goes off to drive the radio

JNE GENERATOR

l> <UCH0_TONE/%.1D]

Faleisize

2yt
=

e Cf

| TONE _ENABLE]
QV‘\,.N-, TONE_CLOCK .2 D <,
) o
Morse Code Generator A
| o e BH
I <t

mate Radie Club

9/14

Communications

Control System: Serial Ports
Your parents (grandparents?) did computer surfing using a MODEM

MODEM connects with 2 data lines, one each direction

a2t 3
frey PRpCERISAN
L Zyps TESTM T 000, ‘E‘P 4
vaa Lo b -7+
5 mes 5 FTHmL ¢ i n
TT/2.60)
88K 3 @0 E)
3 vz P 58 35 ana-snieonon
uo T i srs202088 0 v
W 1o Q usan A€ { b3 + i—210 D~
< & causs usan {2 I H i e
s F oo Gl B o 4 = o |
v I Hes G | [Hoem
" 5 = 44
v, W o @ .
) sEm oo 82
ie pin o L
ibers mewer R28 R = =
i s Feax T
] . L

g
el
Bz
134
<R
]
i
i
of
o
H
——
a
H
-

2
&
g
I
i 25

I TONE GENERATOR

TOY Clock

Control System: Time Of Year clock
Why we want time

Five or six systems running at once

‘ <@ .
e [All sharing the same channel
- g
ol S Take turns talking on the air
L0 T % : .
s Ll e S First talks at 10:00:00 for a minute
o Ra4 =
1335% - |

Second talks at 10:01:00
Third talks at 10:02:00
Rinse and Repeat!

More Memory

Control System: External Memory
Program Flash needs special programming hardware
Software knows how to write and erase FRAM and FLASH
FRAM hasFOX HUNT plan (operating commands)
FLASH has audio waveform data (i.e. voice clips)

FRAM/FLASH vaa
9

Vi uy
O crispi2e

: FRRCHIL Y33 uiz
:k‘ro 5183 vaa Al
!,
(N_RXD/2.7C | E

Other Raspberry-PI Projects

Raspberry-Pl Projects that exist

102-73161-0 Raspberry-Pl Fox Transmitter
Talking system for FOX Hunting

02-73161-0 Raspberry-Pl Talky Toaster
Uses that same board
Adds LEDs, Switch, Light Sensor, R/C Servo Control

102-73173 Plant Killer Base
Houseplant Monitor (monitor soil moisture)
Use the WiFi features of the Raspberry-Pl to send soil moisture reports

102-73173 CI-V Aux Control
Switches to control Ham Radio operation
CI-V is the control interface for ICOM radios

102-73209-0 NMEA Logger
Capture data from fishfinder (lat/long/depth)

Raspberry-Pl Projects, artwork only

102-73171 LED Display Control
Incomplete project to control large 7-segment display

Secret Content

Pay no attention to the man behind the curtain

End of the line We are done here

Go away Get Back
Dragons be here

You are not permitted to look beyond here

Scary Notes for the Presenter

Notes for the terminally forgeful

Here we go again!
-Dolly Parton

What can we do with single-chip computer?
Slide: 3
This is a project that makes use of a SOC, a System on Chip microprocessor.

Most of the functional stuff is inside the SOC.

We'll use the ICARC Fox Transmitter as an example.

It started out using a single-chip processor, moved to a Raspberry-Pl and back
to the SOC.

The move away from the -Pl was a result of issues that crop up when you have
a General-Purpose O/S (Linux) in control of your project. In particular when
the OFF-ON switch can remove power without shutting down the file system.

14 /14

What can we make with single-chip computer?
Slide: 4
The hardware presented here is a project started in 2018 make a very flexible
fox transmitter for the lowa City Amateur Radio Club.
FOX Hunting where the hunters attempt to find a group of hidden transmitters.

Each one talks for minute, in turn. After they all get a chance to talk, the first
one goes again and it all repeats.

What processor to choose to implement this fox transmitter system?

PIC12/PIC14
Dirt Cheap

DOWNSIDE:
Most are pure Harvard Architecture

Most are too small of a memory footprint
Vendor tools ($$$)

Not compiler friendly!

14 /14

Arduino
AVR-DU Commonly used.

Linux toolchain (makes author happy)

DOWNSIDE:
Unfamiliar to author

Limited Program Memory (32KB visible),
slightly bigger RAM (8KB)

Harvard Architecture

ARM
Newer Arduino boards use ARM

STMicro has huge pile of development boards
Large memory space, both Flash and RAM
Fast clock speed
Development tools readily available and low cost
Linux toolchain

DOWNSIDE:
Unfamiliar to author

14 /14

Raspberry Pl
Very large memory footprint

Runs Linux
Easy to program and debug
Has WiFi to update things

DOWNSIDE:
Power PIG (when we're running on batteries)

File System corruption when powered down incorrectly.

ZiLOG zNEO
Reasonable memory footprint

Mixed VonNeuman/Harvard Architecture
Plays well with the "C"” language

DOWNSIDE:
Package availability

ZiLOG seems to be coasting into oblivion

There are little -PI (Raspberry-Pl Zero) and big -Pl models (Raspberry-PI-3,
Raspberry-PI-4) examples on the desk.

Fox transmitter is the Raspberry-Pl Zero and it is powered by 6 AAA batteries
(these are the little ones!)

14 /14

The PI runs Linux. After using it a bit, it will probably seem easier to work
with than a Windows based system.

Most everything is a shell script or Python. Some low-level functions written in
C like the code that manages the RF synthesizer.

No screen (rather obvious) so don’t want to bother with any graphical software.
Writing in Python and C so we simply ignore any graphical stuff, the Fox
Transmitter application is all procedural.

The -Pl is still generating a graphical user interface, but we're not using it (-PI
Zero has HDMI port for screen!). The shell-script that controls it starts when
the -PI boots up.

Entry in the startup scripts to run the Fox Transmitter application. | googled it
after writing and testing the application code and promptly forgot what | did. |
can always hook up a monitor or use a remote desktop (like VNC or something
similar) to go in and look at the scripts and code that runs it all.

The SD card is backed-up once it's all up and running so recovery from a
corrupted SD card needs only to restore the backup image to the SD card.

The backup is a raw dump of the card, not a file system dump. Use dd to save
and restore.

This raw dump is not compressed. takes up as much space as the size of the
SD card.

14 /14

Since theres no control over the system, other than the power switch, when out
in the field, it's not difficult to hose the SD Card. ARRGH!!!

Also, the ARM chip and the SD card aren’t all that fast, so time from power-on
to running the application is slooooooow.

The Talky Toaster project can illustrate that.

The Pl suck the life out of the battery. It's only goos for one fox hunt before
uit needs to be replaced.

The Raspberry-Pl is still way less power than most things you'll work with on
the desktop. The PI-4 and PI-5 get by on a 10W or 15W supply.

T

A

Raspberry-Pl Siide 5
This came about to be able to do voice, it talks.

A lot less power than the Raspberry-PI-3 or Raspberry-PI-4 and a lot smaller
so it fit in the target enclosure.

-Pl has a PWM controller so it has audio capability built-in.

14 /14

Pretty much same hardware as the zNEO version.
Had to add external A/D as -Pl doesn’t have this...

ZiLOG zNEO slide: 6

This device used extensively for previous projects so author is familiar with these
devices. Programming tools readily available from ZiLOG. No-cost compiler,
low cost USB device programmer.

Used extensivly at VanAllen Hall for GSE.
Device programming simple enough for building your own programmer. Which,

of course, was done to solve an O/S issue. Also required programming software
on the Linux host.

Compiler tools can be operated under Linux. Author doesn’t use Windows, so
tools must be able to execute in the Linux environment. WINE emulator to the
rescue.

The peripherals in the block diagram are typical of what you gind in most SOC
chips.

Raspberry-Pl processor chip covers slightly different applications, so the collec-
tion of peripherals is different, The A/D function is missing.

14 /14

What's missing from the zNEQO? Siide: 7

Not much.
The zNEO is a bit shy on memory so more is needed, but most of the rest is
right on the chip. Extra external memory solves that problem.

Everything is surface mount these days so it's difficult to bread-board. This
project was tested on a circuit board. Some haywires were required on the early
boards.

zNEO has fairly broad selection on on-chip peripherals. Can do things with just
the zNEO chip, a crystal, and some buffering.

The Fox Transmitter project doesn’t use too many of the zNEO peripherals or
package pins.

The software loaded into the zZNEO program flash controls this, of course.
It implements a simple verb/noun processor to implement the fox transmitter
function or personality.

The commands that implement the personality of the Fox Transmitter are all
stored in the external memory. The audio waveforms are also stored externally.

14 /14

The EXAMPLE Project Slide: 8

What is shown here is a Ham Radio project started in 2018 to develop a feature
rich fox transmitter for ICARC fox hunts. Six transmitters are place in an area
to be located by the hunters.

They all transmit on the same frequency. Each one gets a minute to transmit
and then goes quiet for five. Takes a bit of discipline to keep your head in the
game and find them all.

BUT, there’s more. Two more hunt groups.

Software is all in the C language.
It requires a bit more that 120KB of the (128KB) program flash in the zNEO.

The 4K RAM in the zNEO is barely adequate.

One must be careful when creating code to keep things out of RAM that don't
need to be there. Must use many vendor specific extensions in the source code
to get everything to the area of memory where it needs to be.

14 /14

Load map from the latest build.

Space Base Top Size Used Unused
ROM T: 0000 T: 67C5 8000H 67C6H 183AH
(32768 26566 6202)
EROM C:008000 C:01DEF9 18000H 15EF9H 2107H
(98304 89849 8455)
RAM R:FFB0O0O R:FFB8BO 1000H 8B1H T4FH
(4096 2225 1871)

The application does not use heap memory (i.e. no malloc() calls).
It does use lots of stack space for dynamically allocated variables.

ROM and EROM are both in the 128KB program flash (0x000000 to
Ox01FFFF).

Timers
100Hz system heartbeat and system time

Tone generator for morse code

Times morse code (interrupt rate is DIT)

14 /14

UART (Universal Asynchronous Receive Transmit)
Host control port

Radio Module control port

PWM Controller (Pulse Width Modulator)
Audio out to radio circuit

SPI (Serial Peripheral Interface)
FRAM memory device

FLASH memory device

12C (Inter-Integrated-Circuit bus)
TOY clock

S15351 RF synthesizer (radio carrier generator)

A/D (Analog to Digital)
Battery Voltage

Battery Current
5 Volt Regulator

14 /14

GPIO (General Purpose Input/Output)
Power control bits

Tone enable bit (TONE_ENABLE)
RF Enable bit

Jumper Monitors

PTT control (Push-to-Talk)

Makes the radio transmit

DBG (Programming/Debug Port)
Update zNEO program flash

Audio Slide: 9

This project is simple radio, so it has to make some noise. At a minimum, it has
to do morse code to operate within FCC rules. The transmitter has to identify
itself at the end of every transmission (morse code is sufficient).

It woudl be really neat if it could talk as well. As things turn out, we can use
a PWM controller to make audio. Fortunately for us, the zZNEO has a PWM
controller.

14 /14

To generate4 morse code, we use one of the zZNEO timers to generate a signal
at aq frequency you can hear. For our fox transmitter we go between about
300Hz to about 2KHz. The frequency limts are imposed by the way the radio
works, not by how the zZNEO works.

SO, we make the audio tone (TONE_CLOCK), and then turn it on and
off (TONE_ENABLE). It could have been done without the external
on-off switch, but the the external on-off switch makes the software a
bit easier and makes another feature work.

To make it talk, we need a DAC (digital to analog converter), which is usually
a bit more complicated than what we do here. For our fox transmitter project
we apply some signal theory and make the DAC out of a single on-off bit (the
PWMHO signal).

Turn PWMHO on and off really fast (like at 80KHz) and vary the on/off
ratio. Filter that and you get useable audio (this is how lamp dimmers
work).

14 /14

The volume of data needed to store the audio is way beyond what the zZNEO
can store internally. Think about how big an old-fashioned CD is and how much
audio it stores.

CD stores 600MB of data and that's about 60 minutes of audio. We
don't do stereo, we use smaller samples (8bit vs. 16 bit) and we digitize
slower (5KHz vs. 44KHz),

Even so, 60 seconds of audio at our 5KHz sample rate ends up requiring
300KB to store it.

For now, just realize we store all this audio data in an external memory that
we'll talk about in a bit.

Communications Slide: 10

Here | use the work Communications to describe the data communications link
to the desktop computer used to load the operating commands and the audio
data into the external memory devices.

Why such ancient technology, why not something new and fancy and fast?

14 /14

Software and Hardware!

Serial ports are ubiquitous (that means they're everywhere and | have to use
Google to spell ubiquitous correctly).

The hardware is easy (and cheap) to implement.

Drivers exist everywhere.

Many USB things need special drivers. That's probably OK for high-volume
things, but for us making a small project like this, dealing with drivers is far
beyond our capabilities.

Before each hunt we update the clock in the fox transmitter and check on the
battery condition.

All the computer-stuff is done before so when the hunt setup starts, all we do is
find a hiding spot, turn the transmitter on, listen for it to tell us its alive. The
rest of the transmitters all get dropped the same way.

14 /14

When we first comission the transmitter we have to load the operating com-
mands and the audio waveforms.

The operating commands identify the transmitter with a callsign (like KRNA
or KCJJ) and a nickname. It also define the message traffic that gets sent and
the schedule it will run on.

Basically, these commands define the operating personality of the fox transmit-
ter.

This set of operating commands and the audio waveforms usually don't change,
but the zZNEO software knows how to erase the external memory devices so we
can start over with something new.

TOY Clock Slide: 11

Remember earlier | said that there are five or six transmitters all operating on
the same frequency?

The TOY clock (Time Of Year) is just like the clock chip in your desktop of
laptop. You set it and it does a mediocre job of keeping track of time. We
don’t have an internet connection (of course) so we can't be in regular contact
with a time server to keep our clock set.

14 /14

When the fox transmitter is turned on, it read the time from the TOY clock
to set the system time (same thing occurs on your desktop or laptop). From
then on the zNEO keeps track of time, updating its time number 100 time per
cecond.

The fox transmitter, then, schedules activities based on the current time. So
for our six unit hunt, the fox transmitter turns on every six minutes.

The second unit fires up right after the first is done. It knows what time it is, it
can't hear any of the other transmitters. So when the correct time comes up,
it transmits.

Scheduling Discussion

This is a bit involved, but if you're interested we can go into some detail
here.

The zNEO software keeps time in a 32 bit seconds field and an 8 bit sub-
seconds field. Sub-seconds are incremented every 10mS and they roll-over
at 100. Sub-seconds roll-over increments the seconds field.

So zNEO is truckin down the road keeping track of time all by itself after
getting the correct time from the TOY clock at the start of it all.

14 /14

The schedule is defined in terms of a cycle period and and offset within the
period. Both of these numbers are expressed in seconds.

To find out something about now, take the system time and divide it by the
period, ignoring quotient but keeping the remainder. When the remainder
matches the offset value, that means it time to send the message.

Each transmitter in the group runs with the same period and the each have
a unique offset. So for a six minute period, the offsets will be 0, 1, 2, 3,4,
and 5.

More Memory Slide: 12
And then we can talk about the extra memory needed to store the operating
commands and the audio wqaveform data.

There are two external memory chips, U3 and U12. The zNEO is on the left,
u22.

The chps are connected to the zZNEO with a serial bus so the speed with which
we read these memory chips is relatively slow.

The FRAM, U3, is non-volatile read-write memory. It doesn't need to be erased
before new data can be written. This makes testing a bit easier.

The non-volatile part keeps the contents intact when there is no battery
powering the system.

14 /14

The FLASH, U12, is also non-voltile, but it takes forever to erase the chip when
you need to load different data into it.

The larger device take up to 60 seconds to erase.

The FLASH is used to store waveform data for making audio so it needs to be
much larger than the FRAM used to hold commands. The audio waveforms are
assembled on the host machine and loaded into the Flash.

| use a cheesy USB microphone to collect voice data and then reprocess it to
get it into the format required by the fox transmitter. Recall the small sample
size and low sample rate talked about earlier.

The audio file are large and slow to load (the loader in the zZNEO isn’t optimized
for speed). The idea is that you build the audio once and load it once. Erasing
the flash should be infrequent.

We can load additional audio clips after existing data, you just can’t rewrite a
memory location once you've written it. Flash memorry is programmed to a '0’
and erased to all '1’s.

Secret Content Slide: 14

Discussion

This

14 /14

14 /14

	What can we do with a SOC
	SOC Introduction
	ZiLOG zNEO
	The EXAMPLE Project
	Other Raspberry-PI Projects
	Secret Content

